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L O W E R  L I M I T  TO T H E  S T R E N G T H  OF S U R F A C E  

F O R C E S  IN T H E  CASE OF P L A N E  S T R A I N  OF 

AN I D E A L  R I G I D - P L A S T I C  MEDIUM 

A. E. A l e k s e e v  UDC 539.214;539.374 

A lower limit to the strength of surface forces based on the use of a statically permissible s t ress  field 
follows from the extremum theorems of an ideal r igid-plastic medium [1]. It is also known that the s t ress  
field in a r igid-plastic medium with a convex plasticity condition is unique in those zones in which the de- 
formation ra tes  are  different from zero  [2]. It is shown in this paper that there  exists for the class of prob- 
lems in which a functional corresponding to the lower limit of the strength of the external surface forces is 
nonidentically equal to a constant on a set of statically permissible s t ress  fields a s t r e s s  field which yields 
a maximum of this functional. 

1. Let 2 be a region with a piecewise-continuous boundary S on the (x, y) plane, and let rues(2)  < ~.  
A s t ress  field ( a x ,  ay, w) which is continuous and continuously differentiable, satisfies the equilibrium con- 
ditions in ~2 

a~x a~ a~ 0% 
o-'7 § ~ § I= = 0, ~ § ~ + / v =  0, (1.1) 

and the boundary conditions on par t  of the boundary S a 

r = (~:r § %n~ § 2"rn,:n u = g(S), 

and does not violate the plasticity condition in "~ = ~ + S, 

t r %2 Ts (1.3) 

is called statically permissible.  

A velocity field (tb v) which satisfies the incompressibili ty condition in ~2 

ou av = 0 (1.4) 

and the boundary conditions on the part  of the boundary Su = S - S~ 

u = u o ( S ) ,  v = v o ( S )  (1.5) 
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is cal led k inemat ica l ly  possible .  

In (1.1)-(1.3) and (1.5) fx~ fy, h, g, u~, v0 a r e  specif ied functions, n x and ny a r e  the cosines  of the 
outer  no rmal s  to S, and T s is the yield point for  pure  shear .  

The  coupling equation between the ve loc i t ies  and s t r e s s e s  for  an ideal r ig id-p las t ic  medium wihh the 
Mises  p las t ic i ty  condition is of the fo rm 

Ou Ov 

21; du i)v " 

Oy + Ox 

It follows f rom the e ~ u m  theo rems  for an ~ I  r ~ d - p ~ n s t i c  body [I] that  

where  

�9 Ix (~.~, gu, ~) = I [(a-~u0 + rvo) n~ ~- (r.u o -}- auvo) n,j ldS 

0..6) 

0-.7) 

0..8) 

is a l inear  functional on the se t  G of s ta t ica l ly  pe rmiss ib le  s t r e s s  fields and ax*, a~ ' T are  the s t r e s s e s  c o r r e -  
sponding to the solution of the prob lem (1.1)-(1.6). 

Let  (u, v) be any continuous and continuously different iable  veloci ty  field in ~2 which is k inemat ical ly  
possible .  Then  using the G a u s s - O s t r o g r a d s k i i  formula  and the incompress ib i l i ty  condition (1.4), one can r e -  
duce the functional (1.8) to the fo rm 

- .f [~ (s)~. +~  (s) ~] dS --  t ( /~  + / ~ )  d~ - -  Z~ (~, ~ ,  % 

where  Vn, v t a r e  the normal  and tangential  ve loci ty  components on the surface  S. 

2. Let  us a s sume  that the set  G is not empty  and the functional 12 is not identical ly equal to a constant 
Let  (~x,  ay,-~) be some s ta t ical ly  pe rmiss ib le  s t r e s s  field. Let  r  so that 

i 
2 ' - ') 

4 "c ~ L,y" c)x" ox~;y , ~ t in ~; 

b:~ = O, a~ -- 0 on So. (2.2) 
a5'~ onOS 

82~ 
~ a~ay, (2.3) 

(2.4) 

o r iG .  

(2.5) 

Then any s t r e s s  field (ax ,  a y ,  r)  sat isfying the re la t ionships  

~ ax ~ 82~ au ~ 82cp T 

is s ta t ica l ly  pe rmiss ib le .  

Using (2.3), we will  wri te  the f u n c t i ~ l  (1.9} in the fo rm 

I~(a~, a,~, ~) = I~(a~, ~y, ~) § I0(~), 

where  

[ a--~0,j-=-'-a~--~-j-a-~y -~-y+ 0-~- 

is a l inear  functional on the set  of functions ~ C 3 ( f ~ )  sat isfying the conditions (2.2). 

The  function r is de te rmined  accord ing  to (2.3) f rom the given s t r e s s  field (~x, ~y, T) to an accuracy  
out to a l inear  function; the re fo re ,  in o rde r  to es tabl ish  a one- to-one  cor respondence  be~Neen the se t  of fune- 
t ions ~ sat isfying (2.1) and (2.2) and the se t  G of s ta t ical ly  pe rmiss ib le  s t r e s s  f ields,  we se t  

Let  M be a se t  of functions ~a~C3(~)  sat isfying (2.2) and (2.6), and let  M 1 be a subset  of functions 
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f r om M for which the inequality (2.1) is valid. Then  using (1.9) and (2.5), it is possible to r e p r e s e n t  the in-  
equali ty (1.7) in the fo rm 

I., (o;, o;, ~*) ~ 12 (~x, ~u, }) ~- sup I o ((p). (2.7) 

Let  us denote by H the Hi lber t  space cor responding  to M with the sca la r  product  

(%*)  gL~176 o~) to= ~ oy~] j  

a n d  t h e  n o r m  

I1:,~ 11~ = (% ,~). ( 2 . s )  

We will  show that 9 = 0 follows f rom (9 ,  ~P) = 0. The remaining axioms of a sca la r  product  a r e  sa t i s -  
f ied in an obvious way. Let  (9 ,  9) = 0; then we have f rom (2.7) and (2.8) 

= (Z0 + CZlX -I- CZ2y "~- CZa(X 2 -]" y2). 

If S a ~ @, then it  fo l lows f rom (2.2) and (2.6) that a i  = 0( i  = 0 , . . .  ,3) and 9 -  0. We note that the s e c -  
ond of the conditions (2.2) is sat isf ied for any ai. 

Let  us cons ider  a se t  N c H such that a lmos t  eve rywhere  in ~2 

" |  \ l (~x (~" 02q) (~X2) , -~- ) < ' ,  ~ N .  
, o-~ - ,  ( ~  0~ 

(2.9) 

It follows f rom (1.3) and (2.9) that 

Ilmlll,-=_ q-\o,," ox>-) ~ - \ ~ s  j - i ,~  ~L 4 , . <,:,) T 

Consequently,  N is bounded. 

We will  show that N is a s t rongly convex set ,  i .e . ,  the re  ex is t s  a constant  T > 0 for which any function 
9 = (91 + q~)/2 + ~O~N if  91, g z ~ N  and II ~ll H -< T l l g l - q ~  IIH. We will  denote 

( "!~ )J Zr .... L ~ ~ ~: ~ ~ x ~ - ~  + , ' ~  o~-~,~ �9 (2.~0) 

Omitting the obvious calculat ions,  we have 

(Z(% .,.~- ~r..~ v> - 
' ' - -  " ' § -:- ~ (L,~,.) -- -V (L (<m - r 

% k 4 t  

V t t -- .> 1 =- (L~0 ~ + 2Lq- "5  (Lq ,): -- -~- (L (~, -- 

| (Tafpl) 2 ' . . . . .  ~- ~ (I. %) - ( L , +  V ~ -  

Since 91,  ':P~. ~ N~ we obtain f rom this  

Z % ' q>' + ,b <~ /;q; }- I - -  -~-  ( L  (q:, - -  ,r.>)) > '" 

Let  r be an a r b i t r a r y  function which sa t i s f ies  the condition 

(2.11) L~b ~ -~ (L (m~ -- m~)) ~, 

then 
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and the function 

It follows f rom (2.8) and (2.10) that 

It is  obvious that for ~Pt, ~2 ~ N  

% -F ~,, 
2 " " ~ N .  

= " 0 II ',P I]~ .[ (Lcf,)- d... (2.12) 
P. 

(1/2)L(~ -- %) ~< I (2.13) 

is valid. F r o m  (2.11)-(2.13) we have the chain of inequalities 

f ! 
'-' dO. ~ .f (L (,~, - -  %.))~ dO. ~ n '~ - -  % ti~, Ii,l  I,,,, = dO. < ( , r , -  %)) '  < 

b. .,., .q 

f rom which it follows that it is sufficient to se t  T = 1/4.  

Following the resu l t s  of [3], one can show that N is closed. Thus N is a bounded s t rongly convex set. 

Let  (u, v) be some kinematical ly  possible  veloci ty field which is continuous and continuously' d i f ferent i -  
able in ~2. Then we have f rom (2.5) and the Cauchy-Bunyakovsk i i  inequality 

/o(m) <~ CtI,~IIH, 

where  
1/2 

C =  4 ~z) ~- a,.l ' ax  

and, consequently, I0(~) is a l inear  bounded functional specified on the set  M, which is dense in H. It follows 
f rom the t heo rems  Of functional analysis  that  it is possible in this case to continue I0(~0 ) in a unique fashion 
onto the ent ire  se t  H. The continued functional I 0 (~) is continuous in H. 

The existence of a unique e lement  ~* ~ N such that 

I 0 (~*) : sup [0 (~0) (2.14) 
~ h  r 

follows f rom the next statement.  

Let  H be a Hilbert  space,  19 a l inear continuous functional, and V c H a s t rongly convex bounded 
closed se t  with boundary Q. Then there  exists  a unique element ~ ~ Q for which 

!~ : sup (iaf) l~. 

The proof  of this s ta tement  is s imi lar  to the proof  of the theorem on the minimum of a quadratic rune- 
t ional with one-s ided l imits  [3 ,  4] .  

Let  { Sn } ~ V be a sequence such that 

Since V is bounded, 

lira l ~  = sup l~. (2.15) 

II*.IIH ~< K < 

and it is  possible to derive a sequence {$nk} such that 

lim l~n~ = lz, Z E H. (2.16) 

It follows f rom the c losed nature and convexity of V that V is weakly closed. Then • ~ V, mud setting r = • 
we have 

f rom (2.15) and (2.16). 

We will  show that ~ ~ Q~ 

lq~ = sup l , ,  q~ ~ V 
~ v  

Let us a ssume the opposite. Then there  exists  a 5 > 0 such that V 5 c V and 
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v 6  = ( r  IIl~, - r II < ~). According to the Riess  t h eo rem  on the fo rm of a l inear  continuous functional in a Hi l -  
b e r t  space,  we have 

lq~ = (% %), % ~ H. 

Let us consider  an e lement  r ~ H such that 

It is  evident  that Ct ~ V6 and in addition 

8 % 
~,,  = ~ Jr 2 ~ %11ii" 

8 z~, = (~,, %) = (~, %) + -~  II % ] > z~ = sup z,. 

w e  obtain a contradict ion.  Consequently,  ~ ~ Q. Since ~o ~ Q, the uniqueness  follows f rom the l inear i ty  of 
the functional and the s t rong convexity of V. 

It is s imi l a r ly  p roven  that the re  exis ts  a unique e l emen t  ~o~ Q for which 

hp = inf l~. 

3. The maximum of the functional I0(~) is de te rmined  on the set  N c H. T h e r e f o r e ,  the problem of in 
what sense  the s t r e s s e s  (2.3), which co r r e spond  to the e lement  ~o ~ 1I, sa t i s fy  the equi l ibr ium equations (1.1) 
and the boundary conditions (1.3) is of in te res t .  

It follows f rom (2.8) that if ~o ~ H, the der iva t ives  a2 q /oxay  and (a2~0/ay ~ - a2r ~) a r e  integrable 
with a square  in ~. Consequently,  the s t r e s s e s  

% -- % :=-~= ---~'~ "~ "r'(O2q~"OY~ - -  O'-~'Ox2)' (3.1) 

z = u - z y - m / a x @ ,  

where  

(%, %, ~) ~ G, 

a r e  a lso  integrable  with a square  in ft. 

The space  H is a supplement  of the se t  M with r e s p e c t  to the norm (2.8); consequently,  there  exis ts  a 
sequence {~n} ~ M such that 

In this  connect ion the identity 

where  6u = u a - u l ,  6v = v2 - v i a  and (u i ,  v l )  and (u~_, v2) a r e  a r b i t r a r y  continuous and continuously d i f f e ren -  
t iable k inemat ica l ly  possible ve loc i ty  f ields,  is valid for  each @n- Consequently,  

I I 
= .. ~ o~" o," + o~ ~ / a ~ - k o = o y  oxoy/ 

c,=: + (a6" I ka=/ kay - o=/ / 

Thence  accord ing  to (3.2), we obtain 

Then  

r ( o,-,~ a.,-,,~ o~,, a:,~ (a~,, , as~,~ ] 

11 S~y fl 

(3.4) 
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follows f rom (3.1). 

Thus the corresponding s t r e s s  field (2.3) for  an  e lement  r ~ H sat isf ied theequilibrium equations (1.1) 
and the boundary conditions (1.2) in the genera l ized  sense  (3.4). In pa r t i cu la r ,  if ~0 ~ M c H, then Eq. (1.1) 
and the boundary conditions (1.2) a r e  sat isf ied in the usual sense  for the s t r e s s e s  (2.3). 

We note in conclusion that  the r e su l t s  obtained a r e  valid for  file en t i re  region ~ occupied by the m e -  
dium, independently of the dis t r ibut ion of r igid and plast ic  regions.  A proof  of the uniqueness of the s t r e s s  
field only for  those pa r t s  of the body in which the deformat ion r a t e s  a r e  d i f ferent  f rom ze ro  is given in [2]. 
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P R O B L E M  O F  P U R E  S H E A R  O F  A 

V I S C O P L A S T I C  M E D I U M  B E T W E E N  T W O  

N O N C O A X I A L  C I R C U L A R  C Y L I N D E R S  

A.  V .  R e z u n o v  a n d  A.  D. C h e r n y s h o v  IYDC 539.374 

The  problem of the flow of a v iscoplas t ic  m a t e r i a l  between two noncoaxial  c i r cu la r  cyl inders  is d i s -  
cussed.  An approximate  solution is found with the help of the i te ra t ive  method descr ibed  in [1, 2]. Analytic 
methods  of solving s imi la r  p roblems  a re  d i scussed  in [3-4]~ An approximate  solution is found in [6, 7] with 
the use of i t e ra t ive  methods  [8]. 

1. The  problem is solved in a cy l indr ica l  coordinate  sys tem.  The axis  Oz is d i rec ted  para l l e l  to the 
generat ing l ines of the cy l inders ,  the contours  of whose t r a n s v e r s e  c ross  sect ion a re  specif iea by i~he equa-  
t ions R0 = R0 (q) and R1 = R1 (~) .  The outer  cyl inder  is fixed, and the inner one moves  in the positive d i r e c -  
t ion of the axis  Oz with ve loc i ty  v . .  In this case  only one veloci ty  component v z = v( r ,  ~p) is different  f rom 
ze ro .  In the flow under d iscuss ion  the components  of the deformat ion  ra te  t ensor  a re  of the form 

1 Ov I Ov 
e r r = % ~ = e z z = e ~ = O '  e ~ z - - 2  Or' e~=~r#-~"  (1.1) 

We will wr i te  the re la t ion  between the components  of the s t r e s s  tensor  ai j  and the components of the 
deformat ion  ra te  tensor  eij for a v iscoplas t ic  medium with the Miesz plast ic i ty  condition in the form [9] 

~ = ( ~ + 2~t ) e~i - -  Zh6~J, (1.2) 
\ hl  k l  

where  Pl is the hydros ta t ic  p r e s s u r e ,  k is the yield point, and ~ is the v i scos i ty  coefficient.  Substitnting 
(1.1) into (1.2), we obtain 

arr  = (7(ptp = (Yzz = - - P l ,  (Yrr == O, 

k -~- ~ty Ov 
~ = - - T -  Or'  

We wri te  the equi l ibr ium equations 

OP 1 OP l 

Or 6(9 

% :  k q- ~7 ov ] /  av ~ . 
r~ O 9 '  7 =  (1.3) \ r 0r ] " 

0%~ i 0%~ , ~,: @ i  == O. ( 1 . 4 )  
. . . . . .  O, ~ ~ r a~ ' r az 
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