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LOWER LIMIT TO THE STRENGTH OF SURFACE

FORCES IN THE CASE OF PLANE STRAIN OF

AN IDEAL RIGID-PLASTIC MEDIUM

A. E. Alekseev UDC 539.214;539.374

A lower limit to the strength of surface forces based on the use of a statically permissible stress field

follows from the extremum theorems of an ideal rigid-plastic medium [1]. It is also known that the stress
field in a rigid-plastic medium with a convex plasticity condition is unique in those zones in which the de-
formation rates are different from zero [2]. It is shown in this paper that there exists for the class of prob-
lems in which a functional correspornding to the lower limit of the strength of the external surface forces is
nonidentically equal fo a constant on a set of statically permissible stress fields a ‘stress field which yields
a maximum of this functional.

1. Let Q be a region with a piecewise~continuous boundary S on the (x, y) plane, and let mes(Q) < «.

A stress field (ox, oy, T) whlch is continuous and continuously differentiable. satisfies the equilibrium con-
ditions in Q

et ay +fe=0, 5=+ ,,;’ +fy="0, (L.1)

and the boundary conditions on part of the boundary S;

Op = an;zc -+ Gyn§ + 21:”-“”‘!/ = g(S)'
Tn = (0y — 02) iy + 7 (2 — 1) = R (S) @.2)

and does not violate the plasticity conditionin @ = @ + S,

S~ U< .3)

is called statically permissible.

A velocity field (u, v) which satisfies the incompressibility condition in @
Gu o g (1.4)

ox cy

and the boundary conditions on the part of the boundary Sy = S —§;

u = uy(S), v = vy(I) (1.5)
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is called kinematically possible.

In (1.1)-(1.3) and (1.5) £, fy, h, g, W, vy are specified functions, ny and ny are the cosines of the
outer normals to S, and 7g is the yield point for pure shear.

The coupling equation between the velocities and stresses for an ideal rigid-plastic medium with the
Mises plasticity condition is of the form

du ov

G,— 0, axr ay
2t T oow | av T 1.6)

dy T ox

1t follows from the extremum theorems for an ideal rigid-plastic body [1] that
am I (o}, 0y, 7%) = supl, (0.0, 1), (L7) -

(0x: 0y 0)EC

where

. I, (0x, 0y, 7) = ‘1 [{osuy + Trg) Ry + (T2y + Gy26) 1y1dS 8
: 3, (1.8}
is a linear functional on the set G of statically permissible stress fields and oy, o} , T 2rethe stresses corre~
sponding to the solution of the problem (1.1)~(1.6).

Let (u, v) be any continuous and continuously differentiable velocity field in Q@ which is kinematically
possible. Then using the Gauss —Ostrogradskii formula and the incompressibility condition (1.4), one can re-
duce the functional (1.8) to the form

a 8
1,065,009 = [ (3 (0 =0 4+ 750+ 52 2
Q

1.9)
— (g (S +1(8) vl dS — [ (e + f0) 42 =T, (61, 6y, 7),
84 Q
where vy, vi are the normal and tangential velocity components on the surface S.

2. Let us assume that the set G is not empty and the functional I, is not identically equal to a constant
on G. Let (x, oy, T) be some statically permissible stress field. Let ¢=C3(Q) so that

_ e - ) o
1{0 9, ¢ &% " ¢ B 2.1)
= I ) Rk
i e 2.2)
=0 se=0on 5o (

N - . -
is statically permissible.
Using (2.3), we will write the functional (1.9) in the form
L0y, 0y, T) = I(0y, Gy, T) = I4{0), 2.4
where

is a linear functional on the set of functions p=C3(Q) satisfying the conditions (2.2).

The function ¢ is determined according to (2.3) from the given stress field (ox, Oys T) to an accuracy
out to a linear function; therefore, in order to establish a one~to-one correspondence between the set of func-
tions ¢ satisfying (2.1) and (2.2) and the set G of statically permissible stress fields, we set

fesa=0, (a0, [%aa-o. 2.6)
& 2 2y

Let M be a set of functions ¢=C3(Q) satisfying (2.2) and (2.6), and let M, be a subset of functions
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from M for which the inequality (2.1) is valid. Then using (1.9) and (2.5), it is possible to represent the in~
equality (1.7) in the form

I,(oz, 6y, ) = I, (04, 0y, 7) + sup Lo (9). @.7)

Let us denote by H the Hilbert space corresponding to M with the scalar product
_{[2%e v , 1 (P9 d¢\(®y o
(@’W)‘i[azayazay"“l;‘(az 3y)(x a_yf)]dg

Tolk = (9. )- ' 2.8)

We will show that ¢ = 0 follows from (¢, ¢) = 0. The remaining axioms of a scalar product are satis-
fied in an obvious way. Let (¢, ¢) = 0; then we have from (2.7) and (2.8)

and the norm

@ = ap T o4z + %y + ag(z? 4 y3).

If S; = ¢, then it follows from (2.2) and (2.6) that aj = 0(i= 0,...,38) and ¢ = 0. We note that the sec-
ond of the conditions (2.2) is satisfied for any aj.

Let us consider a set N C H such that almost everywhere in Q

1[0 o, Pe oo\, [T o) ,
—(—‘——-’+~‘f—-§f)—:— Ti——i"—)@, pe=N. 2.9)

A
S
g _
R
\_Q S
A
8

Consequently, N is bounded.

We will show that N is a strongly convex set, i.e., there exists a constant v > 0 for which any function
e=(p1+ @;)/2+PEN if ¢, ¢0,=N and | plig < v l¢y = @ iy, We will denote

o[22 5] (28]
mo (R (G- B2 (2
Omitting the obvious calculations, we have
(Z ((P’ z( + ‘l))ﬂ 4 (T)? + 5 (L)~ = (L (s — q2)?
(L £ 2L V(L) 4 = (L) — (L (1 — @)
Ao+ VA )+ T — - Ly — 01 -

Since ¢y, ¥; =N, we obtain from this

] . 2.10)

(Z(B5 2 o)< V:——(Lq,—w)) (1¥—<L<(r,—¢o)>2+Lxx)’-

Let ¥ be an arbitrary function which satisfies the condition

1 2
Ly <— (L @r — ) @.11)

then
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and the function

% ;I— A +¢e N
1t follows from (2.8) and (2.10) that
bol = { (Lg)da. ©.12)

Q
It is obvious that for ¢4, 9, =N
(12)L{g, — ¢} < 1
is valid. From (2.11)=(2.13) we have the chain of inequalities

2.13)

_— ) . t .
Pote= [ Zerao< L [ @ —oraa < [ (Lo — o2~ S 1o — aufte
Q ‘@ 2 .
from which it follows that it is sufficient to set y = 1/4.
Following the results of [3], one can show that N is closed. Thus N is a bounded strongly convex set.

Let (u, v) be some kinematically possible velocity field which is continuous and continuously differenti-
able in Q. Then we have from (2.5) and the Cauchy —~Bunyakovskii inequality

I{9) < Cliolin,
where

o (ol (g + 2]

and, consequently, Iy(¢) is a linear bounded functional specified on the set M, which is dense in H. It follows
from the theorems of functional analysis that it is possible in this case to continue Iz{¢) in 2 unique fashion
onto the entire set H. The continued functional Ij(¢) is continuous in H.

The existence of a unique element ¢* = N such that
I, (p*) = sup I, (¢) 2.14)
eeN

follows from the next statement.

Let H be a Hilbert space, I¢ a linear continuous functional, and V C H a strongly convex bounded
closed set with boundary Q. Then there exists a unique element ¢ =Q for which

lg == sup (inf) Ip.
YyEV
The proof of this statement is similar to the proof of the theorem on the minimum of a quadratic func~
tional with one-sided limits [3, 4].
Let {#,} = V be a sequence such that
lim l\pn = sup l\p. (2‘15>

N> L=
Since V is bounded,
balle < K <00
and it is possible to derive a sequence {y} such that
Bim Wpnp = Iy, x = H. (2.16)

1t follows from the closed nature and convexity of V that V is weakly closed. Then x = V, and setting ¢ =¥,
we have

lg=sup lp, o=V
bV

from (2.15) and (2.16).
We will show that ¢ & Q. Let us assume the opposite. Then there exists a 6 > 0 such that V5CV and
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Ve = (¥ ]II @ = Pl < 8). According to the Riess theorem on the form of a linear continuous functional in a Hil-
bert space, we have

Ip = (9, 9), ¢ = H.

Let us consider an element ¥ = H such that

=0+ 5 i

It is evident that §; = Vg and in addition

Wy = (1 @0) = (91 @0) + = 2 ool > 1o = sup Iy.
We obtain a contradiction. Consequently, ¢ = Q. Since ¢ = Q, the uniqueness follows from the linearity of
the functional and the strong convexity of V.
It is similarly proven that there exists a wnique element ¢ = Q for which
Ip = inf ).
yev v
3. The maximum of the functional I;(¢) is determined on the set N C H. Therefore, the problem of in

what sense the stresses (2.3), which correspond to the element ¢ =N, satisfy the equilibrium equations (1.1)
and the boundary conditions (1.3) is of interest.

It follows from (2.8) that if ¢ &= H, the derivatives & ¢/oxdy and (&Fo/0y" — P¢/6x®) are integrable
with a square in Q. Consequently, the stresses

0x = Oy = Oy — 0, - T,(IPi0y* — Fglds?), 3.1)
T = T — T,0°9/0xdy,
where
(0, oy 7 = G,
are also integrable with a square in Q.

The space H is a supplement of the set M with respect to the norm (2.8); consequently, there exists a
sequence {¢,} & M such that

le — @allg > 0, n— oo. (3.2)

In this connection the identity

0, o, \osu 99, [abu | o8w
S[(ay‘z axZ)Tz—awﬂy('@+0x) =0,
Q
where 6u= u —uy, 6V = v; —vy, and (1, v4) and (w, v;) are arbitrary continuous and continuously differen-
tiable kinematically possible velocity fields, is valid for each ¢p. Consequently,

o adu du , v
u((a“y‘_a_zl)‘% - azay(a_y + 6x))dg

— g (0 &P__OQ(P“ . o9, Bu R _52¢n\
TII\\GE T T o T aR ) % \Fmay  dwdy
Q
)
x(,_“+ ”)d Q< o — Pnlas

cue [ S8+ 5 4T

Q

Thence according to (3.2), we obtain

(o _og)on_ o (o o)) gy .5
o h o o) 9z dxdy ( oy ) |0 ©-3)
Then
Vlton—on e+ 2] ae {1g()80, + h(S) b0, 5 — f(fxau +7,80)dQ = 0. ©.4)
2 Sg
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follows from (3.1).

Thus the corresponding stress field (2.3) for an element ¢ & H satisfied theequilibrium equations (1.1}
and the boundary conditions (1.2) in the generalized sense (3.4). In particular, if ¢ & M C H, then Eq. (1.1)
and the boundary conditions (1.2) are satisfied in the usual sense for the stresses (2.3).

We note in conclusion that the results obtained are valid for the entire region Q occupied by the me-
dium, independently of the distribution of rigid and plastic regions. A proof of the uniqueness of the stress
field only for those parts of the body in which the deformation rates are different from zero is given in [2].
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B g o

PROBLEM OF PURE SHEAR OF A
VISCOPLASTIC MEDIUM BETWEEN TWO
NONCOQOAXIAL CIRCULAR CYLINDERS

A. V. Rezunov and A. D. Chernyshov UDC 539.374

The problem of the flow of a viscoplastic material between two noncoaxial circular cylinders is dig~
cussed. An approximate solution is found with the help of the iterative method described in [1, 2]. Analytic
methods of solving similar problems are discussed in [3~4]. An approximate solution is found in [6, 7] with
the use of iterative methods [8].

1. The problem is solved in a cylindrical coordinate system. The axis Oy is directed parallel to the
generating lines of the cylinders, the contours of whose transverse cross section are specified by the equa~
tions Ry = Ry(¢) and R; = Ry(¢). The outer cylinder is fixed, and the inner one moves in the positive direc~
tion of the axis Oz with velocity v, In this case only one velocity component vy = v(r, ¢) is different from
zero. In the flow under discussion the components of the deformation rate tensor are of the form

1 av 1 ov
€rp =gy =€, = €rg =0, €re = 5= oz = 3 3 (1.1)

We will write the relation between the components of the stress tensor ¢j; and the components of the

deformation rate tensor ejj for a viscoplastic medium with the Miesz plasticity condition in the form [9]

(v Y
Gu*(l/eklekl“%-%t €;5— ;s (1.2)

where p; is the hydrostatic pressure, k is the yield point, and u is the viscosity coefficient. Substituting
(1.1) into (1.2), we obtain

Opp = Opg = Oz = —Py, Opp = 07
_ kH-py dv _ k+py ov o / a1\ 1 vV
o=t s =50 =V ) .3)
We write the equilibrium equations
op, 9p; da,, 1 86, G, 9p
w0 Tty T m L.4)
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